5,200 research outputs found

    Epstein-Zin Utility Maximization on a Random Horizon

    Full text link
    This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies

    Investigating ultrasound–light interaction in scattering media

    Get PDF
    Significance: Ultrasound-assisted optical imaging techniques, such as ultrasound-modulated optical tomography, allow for imaging deep inside scattering media. In these modalities, a fraction of the photons passing through the ultrasound beam is modulated. The efficiency by which the photons are converted is typically referred to as the ultrasound modulation’s “tagging efficiency.” Interestingly, this efficiency has been defined in varied and discrepant fashion throughout the scientific literature. Aim: The aim of this study is the ultrasound tagging efficiency in a manner consistent with its definition and experimentally verify the contributive (or noncontributive) relationship between the mechanisms involved in the ultrasound optical modulation process. Approach: We adopt a general description of the tagging efficiency as the fraction of photons traversing an ultrasound beam that is frequency shifted (inclusion of all frequency-shifted components). We then systematically studied the impact of ultrasound pressure and frequency on the tagging efficiency through a balanced detection measurement system that measured the power of each order of the ultrasound tagged light, as well as the power of the unmodulated light component. Results: Through our experiments, we showed that the tagging efficiency can reach 70% in a scattering phantom with a scattering anisotropy of 0.9 and a scattering coefficient of 4  mm⁻Âč for a 1-MHz ultrasound with a relatively low (and biomedically acceptable) peak pressure of 0.47 MPa. Furthermore, we experimentally confirmed that the two ultrasound-induced light modulation mechanisms, particle displacement and refractive index change, act in opposition to each other. Conclusion: Tagging efficiency was quantified via simulation and experiments. These findings reveal avenues of investigation that may help improve ultrasound-assisted optical imaging techniques

    Images of the Cognitive Brain Across Age and Culture

    Get PDF

    America\u27s Public Hospitals and Health Systems, 2003: Results of the Annual NAPH Hospital Characteristics Survey

    Get PDF
    In 2003, members of the National Association of Public Hospitals and Health Systems continued to offer millions of uninsured and underserved individuals access to the medical services so critical for lifelong health and well-being. Delivering these services was difficult, however, given the economic downtown early in the decade and the resulting inadequacies associated with safety net financing. This report examines the operations and activities of NAPH members in 2003, presents the financial challenges they faced, describes the clinical and community services they provided, and profiles the patients they served

    Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis

    Get PDF
    Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host

    Negotiation, Email, and Internet Reverse Auctions: How Sourcing Mechanisms Deployed by Buyers Affect Suppliers’ Trust

    Get PDF
    The Internet has made a wealth of new tools available to the industrial buyer. However, researchers have suggested that computer mediated interaction with suppliers may not be conducive to strong supplier relationships in general and to trust in particular. This paper compares two computer-mediated sourcing tools (email negotiation and Internet reverse auctions) with face-to-face negotiation. Information richness theory suggests that the different media will produce different impacts relating to sellers’ trust in buyers. Data are generated with a simulation experiment using 117 subjects. We found that information richness affects seller-buyer trust: Sellers who used face-to-face negotiation, the richest medium in the study, always reported higher trust in their buyer counterparts than did sellers using Internet reverse auctions. There were also some trust advantages of face-to-face negotiation over email and limited advantages of email over reverse auctions. We also found that procurement complexity influences the relationship between information richness and trust. As hypothesized, when face-to-face negotiation is used, procurement complexity has no effect on seller trust. When reverse auctions are utilized, the greater the complexity of the purchase, the less the seller trust. However, when email is used, greater procurement complexity is associated with greater seller trust, and there are no differences in trust between the email and face-to-face channels. Finally, we found that sellers’ trust in buyers is positively associated with sellers’ desire for future dealings with the buyer

    PECANN: Parallel Efficient Clustering with Graph-Based Approximate Nearest Neighbor Search

    Full text link
    This paper studies density-based clustering of point sets. These methods use dense regions of points to detect clusters of arbitrary shapes. In particular, we study variants of density peaks clustering, a popular type of algorithm that has been shown to work well in practice. Our goal is to cluster large high-dimensional datasets, which are prevalent in practice. Prior solutions are either sequential, and cannot scale to large data, or are specialized for low-dimensional data. This paper unifies the different variants of density peaks clustering into a single framework, PECANN, by abstracting out several key steps common to this class of algorithms. One such key step is to find nearest neighbors that satisfy a predicate function, and one of the main contributions of this paper is an efficient way to do this predicate search using graph-based approximate nearest neighbor search (ANNS). To provide ample parallelism, we propose a doubling search technique that enables points to find an approximate nearest neighbor satisfying the predicate in a small number of rounds. Our technique can be applied to many existing graph-based ANNS algorithms, which can all be plugged into PECANN. We implement five clustering algorithms with PECANN and evaluate them on synthetic and real-world datasets with up to 1.28 million points and up to 1024 dimensions on a 30-core machine with two-way hyper-threading. Compared to the state-of-the-art FASTDP algorithm for high-dimensional density peaks clustering, which is sequential, our best algorithm is 45x-734x faster while achieving competitive ARI scores. Compared to the state-of-the-art parallel DPC-based algorithm, which is optimized for low dimensions, we show that PECANN is two orders of magnitude faster. As far as we know, our work is the first to evaluate DPC variants on large high-dimensional real-world image and text embedding datasets

    wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests

    Get PDF
    We describe a parallel implementation in R of the weighted subspace random forest algorithm (Xu, Huang, Williams, Wang, and Ye 2012) available as the wsrf package. A novel variable weighting method is used for variable subspace selection in place of the traditional approach of random variable sampling. This new approach is particularly useful in building models for high dimensional data - often consisting of thousands of variables. Parallel computation is used to take advantage of multi-core machines and clusters of machines to build random forest models from high dimensional data in considerably shorter times. A series of experiments presented in this paper demonstrates that wsrf is faster than existing packages whilst retaining and often improving on the classification performance, particularly for high dimensional data
    • 

    corecore